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Abstract:  Many engineers affect "Probabilistic life prediction" by replacing 
constants with probability distributions and carefully modeling the physical relationships 
among the parameters.  Surprisingly, the statistical relationships among the “constants” 
are often given short shrift, if not ignored altogether.  Few recognize that while this 
simple substitution of distributions for constants will indeed produce a non-deterministic 
result, the corresponding "probabilities" are often woefully inaccurate.  In fact, even the 
"trend" can be wrong, so these results can't even be used for sensitivity studies.  This 
paper explores the familiar Paris equation relating crack growth rate and applied stress 
intensity to illustrate many statistical realities that are often ignored by otherwise careful 
engineers.   

 
 

Keywords:  crack growth, Paris equation, probability, statistics, Monte Carlo, 
simulation, non-deterministic, probabilistic, joint, conditional, marginal, multivariate 

Introduction: 

There is more to Monte Carlo simulation than replacing constants with probability 
densities.  The purpose of this study is to demonstrate this by comparing the observed 
distribution of lives of 68 nominally identical crack growth specimens with Monte Carlo 
(MC) simulations of lives based on the distributions of their Paris law parameters.  It will 
be shown that several common MC sampling techniques produce wildly inaccurate 
results, one with a standard deviation that is 7X larger than was exhibited by the specimen 
lives themselves.  The cause of such aberrant behavior is explained.  It is further observed 
that estimates of the Paris law parameters are jointly distributed as bivariate normal, and 
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a MC simulation using this joint density reproduces the specimen mean and standard 
deviation to within a few percent. 

The lessons here apply to any regression model, not just to these data, nor only to 
crack growth rate models. 

The Data: 

In the mid 1970s Dennis Virkler, then a Ph.D. student of Professor Ben Hillberry at 
Purdue, conducted 68 crack growth tests of 2024-T3 aluminum [1, 2].  These tests were 
unusual for several reasons.  They were conducted expressly to observe random behavior 
in fatigue.  While almost all crack growth tests measure crack length after some number 
of cycles, Virkler measured cycle count at 164 specific crack lengths.  This provided a 
direct measure of variability in cycles, rather than the usually observed variability in 
crack length at arbitrary cyclic intervals.  While two of the specimens appear to stand out 
from their brethren, the purpose of this investigation is not to play Monday Morning 
Quarterback 25 years after the game, and there is no reason not to consider all 68 
specimens here.  In any event their exclusion changes only the numeric details.  The 
fundamental results are not affected, nor are they affected by using a normal, rather than 
lognormal density to describe them. 

It is common practice to fit a single da/dN vs. ∆K curve through multiple specimens 
of the same material tested under the same conditions of temperature, stress ratio, and 
frequency.  In the study reported here, however, 68 individual Paris models were used.  
Fitting a single curve describes the mean trend behavior very well, but it obscures 
random specimen-to-specimen differences.  Since real applications are subjected to 
similar randomness, it is necessary to capture that effect as well.   

Fatigue Lives Are Lognormal: 

It has been long recognized that fatigue lives are satisfactorily modeled using the 
lognormal density.  For these 68 specimens that model is less than optimal and there is 
some evidence that the probability density may be a mixture of two densities.  It is not the 
purpose of this paper to repeat the earlier work by Virkler, Hillberry and Goel [2], and as 
it turns out, the actual form of the distribution of the specimen lives themselves only 
influences the numeric details of this study, since each specimen’s crack growth rate 
curve was treated individually.  (Treating the data as normal, however, results in a bias in 
the simulated mean of about 5%.  The bias using the lognormal is negligible.)   

Conventional Monte Carlo Simulation: 

Unlike many engineering analytical results, probability estimates are difficult to 
verify experimentally.  This unfortunate reality has perpetuated the misuse of a valid 
statistical tool, and the consequences may not be apparent for years to come. 
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Most engineering Monte Carlo simulations are performed this way.  

1. Set up a conventional deterministic analysis; 
2. Replace constants with probability distributions; 
3. Sample once from each distribution; 
4. Compute the deterministic result and store the answer; 
5. Repeat steps 3 and 4 many times; 
6. Compute the mean and standard deviation of the collected results. 
 

Sadly, many engineers are unfamiliar with the implicit statistical assumptions that 
are at the foundation of Monte Carlo simulation, but as been observed elsewhere [3] 
"Simply not understanding the nature of the assumptions being made does not mean that 
they do not exist."     

What possibly could be wrong with this paradigm?  Luckily we (the engineering 
community) have a dataset that is nearly perfect for answering this question, viz. the data 
collected by Virkler and Hillberry, as part of Virkler’s Ph.D. dissertation.  Professor 
Hillberry graciously made these available for further study.   

Monte Carlo Modeling Specifics: 

After fitting individual Paris equations to each of the 68 specimens, the mean and 
standard deviation for the individual Paris parameters, intercept, C, and slope, n, were 
computed.  The well-known Paris model for fatigue crack growth is given in equation 1. 

nC KdNda )(10/ ∆=      (1) 

where da/dN is the crack growth rate, in mm per cycle, and ∆K is the applied stress 
intensity factor, in MPa√m, given by equation 2. 

  (2) 

Here, ∆σ is the testing stress range, σmax – σmin, a is the crack length, and f( ) is a 
function of the specimen (or component) geometry and crack length.  Of course, when 
equation 1 is plotted on a log-log grid this is a straight line with intercept C and slope n. 

Assuming for the sake of simplicity that there was no variation in the starting crack 
size, the final crack size, or the test stress, the calculated cyclic lifetime can be computed 
from the individual Paris fits using equation 3. 
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In practice this integration is usually carried out numerically.  

To conduct the usual MC simulation Ni is computed from h(Ci , ni) where h( ) is 
equation 3, and i ranges from 1 to say 1000 (or 10 000). 

)|( geometryafaK πσ∆=∆
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Many MC practitioners then calculate a mean and standard deviation for N, or 
log10(N), report the results and stop there, since there is nothing against which to compare 
the distribution of computed values for Ni.  Virkler’s data show the observed distribution 
of actual specimen lives and thus provide a direct comparison for these calculations. 

The Paris Law is Adequate: 

Before going further it is prudent to check the goodness-of-fit of the Paris equation 
itself.  If the underlying model for crack growth rate is inadequate there is little hope for 
accurate life prediction based on it.  The sigmoidal shape of the da/dN ∆K data (Figure 1) 
suggests a model such as the SINH [4] might do a better job than the straight line Paris 
model (and it does, increasing the ratio of standard deviations of calculated lives, 0.918 
for Paris, to 0.957 for the SINH by reducing the disagreement between calculated and 
observed specimen lives from 8.2% to 4.3%).  The added model complexity, however, 
obscures the real issue here, namely the abysmal performance of a rather common Monte 
Carlo simulation (700% error in predicted scatter).  Since the Paris law is adequate it is 
used here for simplicity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - da/dN vs. DK are S-shaped. 

A Note on Modeling: 

Statisticians often assess the efficacy of a mathematical model by decomposing the 
sums-of-squares of differences between the model and the observations.  We, however, 
are less interested in the differences between the measured crack growth rates, da/dNi, 
and their Paris model, than we are in their integrated collective behavior, as given by 
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equation 3.  Such an integrated metric summarizes all sources of “error” - material 
variability, lack-of-fit, testing uncertainties – into the difference between the observed 
specimen life, and that provided by equation 3.  We thus have traded the potential for 
better arithmetic diagnostics (scrutiny of the Paris model) for a more direct measure of 
what we are really interested in - life prediction performance. 

How well does the conventional Monte Carlo algorithm perform? 

The conventional MC simulation of 1000 samples, with independent model 
parameters, C and n, did an acceptable job predicting the mean lifetime, after the log 
transform.  Because the data are skewed to the right, as all fatigue data are, the 
untransformed simulated results overestimate means of the symmetrical normal models 
slightly.   

The simulated standard deviations were another matter:  The actual observed 
standard deviation for 68 specimens is 0.03015 log10 units (18 447 cycles)2.  The 
conventional MC simulation of 1000 samples, with independent model parameters, C and 
n, produced a standard deviation of 0.19778 log10 units (140 261 cycles), 6.6X too large!  

A closer look shows the situation gets even worse.   To be fair, the best possible 
Paris model would use the 68 individual Paris fits, since no simulation could be expected 
to be better than the actual specimens’ behavior.  Using the 68 Paris equations in  
equation 3 produces a standard deviation of 0.02769 log10 units (16 332 cycles), which is 
smaller than the observed standard deviation by about 8%.  Why?   

Of the 68 specimens, two seemed to exhibit longer lives than what might have been 
inferred by from the behavior of the other 66.  All 68 specimens were used here.  Since 
the actual specimen life doesn’t directly influence its da/dN vs. ∆K behavior, predicted 
lives based on these two Paris fits would be more like their sister specimens, resulting in 
the smaller standard deviation for the integrated Paris equations.  So to provide a fair 
comparison with simulated Paris models, the behavior of the 68 integrated Paris laws 
should be the baseline.  Thus the baseline scatter is 0.02769 log10 units. 

Comparing the simulation’s standard deviation of 0.19778 log10 units with the 
integrated Paris law baseline shows the simulation to have overestimated the scatter by 
0.19778 / 0.02769 or about 7.1X.  This is awful.  Such a simulation would be worse than 
useless since it would likely compel a costly redesign.  Put in perspective, the probability 
of failure before about 207 000 cycles is 0.1%, determined from the mean and standard 
deviation of the 68 specimens’ (log-transformed) lives.  The MC simulation puts this 
failure rate at about 33%, an overestimation of failure rate of over 300X.    

This absurd simulation result has been observed by every engineer who has 
performed similar MC simulations, since it doesn’t require any statistics to detect an 
answer that is wrong by a factor approaching an order of magnitude in standard 
deviation.  Sadly the most common palliatives proposed as remedies do not perform 
much better.   
                                                 
2 The analyses were carried out using log10(cycles), and again using untransformed cycles.  The reported log10 result can not, of 

course, be determined simply by taking the log of the mean and standard deviation of the untransformed results.  All 
calculations are summarized in Tables 1 and 2 and Figure 5. 
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What Went Wrong? 

The model parameters, C and n, are assumed to be normally distributed.  Is this a 
good assumption in this case? 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 -  Histograms of Paris Model Parameters C and n  
 

Figure 2 presents histograms of both model parameters.  While somewhat 
approximate, the normal density is not an altogether improper model; surely these 
departures from the normal could not have caused the 7X inflation of the standard 
deviation.  A closer look at the figures provides a clue.  There are two observations that 
are high for parameter C, and two that are low for parameter n.  Perhaps these should be 
considered as pairs, rather than as independent observations.  Figure 3, a schematic plot 
of crack growth rate vs. stress intensity on a log-log grid, shows why C and n behave in 
tandem: when the slope, n, is shallow the intercept, C, must be larger for the resulting line 
to go through the data.  Similarly, a steeper slope requires a smaller intercept.   

Possible Remedies (all of them wrong): 

Assuming C and n to be independent, when they obviously are not (the most 
common error in Monte Carlo modeling), results in unacceptable error in simulated 
lifetime scatter.  Possible remedies that have been suggested are: 

1. n assumed fixed, C is normal 
2. C assumed fixed, n is normal 
3. C assumed a linear function of n. 

 
Fixing either n or C seems at first blush like a reasonable solution, and it does reduce 

the over-prediction of scatter from 7.1X to 5.1X (n fixed) or 5.4X (C fixed).  While this is 
an obvious improvement, the error remains wildly unacceptable.  Sadly, it is at this stage 
when the standard deviation of C or n is arbitrarily “adjusted,” i.e. fudged until a 
believable result is achieved.   
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Figure 4 also shows why assuming either C or n as fixed is not reasonable.  The 
horizontal line is at n = 2.87, the average of 68 Paris slopes.  This is a reasonable value 
only when -6.58 < C < -6.45.  When C is outside this range, as it will be often, the 
resulting simulated combination is very, very improbable.  In fact observations in either 
the first or third quadrants (large n with large C, or small n with small C) are exceedingly 
unlikely in reality but occur about half the time in uncorrelated simulation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 - Schematic showing why Paris Parameters must be correlated. 
Note that in this schematic the intercept is C = log10(da/dN)= -10, at log10(DK)=0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4- Paris Parameters C and n are obviously correlated (r=0.982). 
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Another option for remedy suggests itself since the two parameters are obviously so 
closely related: let one be a function of the other.  A linear fit of C=b1 + b2n, with n 
being sampled from a normal density, does indeed improve things.  But this time the 
resulting error ratio is 0.51, i.e.: the scatter has been over-corrected, and now is 
underestimated by almost half.  Clearly this nonconservative result is also unacceptable.   

To understand why such an appealing suggestion should have such an undesirable 
result, look again at Figure 4 which also shows the 95% confidence ellipse for the C and 
n pairs.  Assuming that one is a linear function of the other, in effect collapses this ellipse 
into a line, thus underestimating the overall variability.  (The confidence ellipse also 
suggests that two of the tests may be different from the others, as was noted earlier.)   

The Right Way: 

We have considered four very common oversights in Monte Carlo modeling.  So, 
how do you do it correctly?   

Parameters estimates for C and n are jointly distributed.  (Notice that this is not 
optional.  It is how regression model parameters naturally behave.  You can’t choose the 
ratio of a circle’s circumference to its diameter to be an integer because it might be more 
convenient.  The fact is that π is inconveniently transcendental.  Similarly, regression 
parameter estimates are asymptotically multivariate normal, and correlated, so any 
realistic simulation must sample from their correlated joint density.)  Modeling them as 
bivariate normal in a MC simulation produces a standard deviation of 0.02802 in log10 
integrated lifetime for 1000 samples, which is very close to the standard deviation of the 
integrated individual Paris fits, 0.02769.  The ratio of standard deviations is 1.012.  
Modeling the joint behavior correctly reduces the greater than 700% error in the 
estimate of the standard deviation to about 1%.   

Notice, too, that replacing a constant n (the horizontal line in Figure 4) with a 
(conditional) probability density has the paradoxical effect of decreasing the resulting 
variability in calculated lifetime, since it corrects Mistake #2 (see Tables 1 and 2).  This 
refutes the common misconception that replacing a constant with a probability density in 
a Monte Carlo simulation always results in increased scatter in the output.  All these 
results are summarized in Tables 1 and 2 and in Figure 5.  

 
Table 1-   MC Results Assuming Cycles are LogNormally Distributed 

      Correct Mistake #1 Mistake #2 Mistake #3 Mistake #4 

  Actual N Eqn 3 N C, n joint C, n indept. n fixed C fixed C=b0 + b1*n 

mean 5.40916 5.39773 5.39909 5.41404 5.39414 5.39911 5.42217 

stdev 0.03015 0.02769 0.02802 0.19778 0.14084 0.14872 0.01426 
mean 
ratio   1.000 1.000 1.003 0.999 1.000 1.005 

stdev 
ratio   1.000 1.012 7.143 5.087 5.371 0.515 
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Table 2 - MC Results Assuming Cycles are Normally Distributed 

      Correct Mistake #1 Mistake #2 Mistake #3 Mistake #4 

  Actual N Eqn 3 N C, n joint C, n indept. n fixed C fixed C=b0 + b1*n 

mean 257,165 250,389 251,182 287,841 261,278 265,859 264,487 

stdev 18,447 16,332 16,240 140,261 88,189 94,453 8,703 
mean 
ratio   1.000 1.003 1.150 1.043 1.062 1.056 

stdev 
ratio   1.000 0.994 8.588 5.400 5.783 0.533 

These results are from random samples of 1000.  Other random samples would differ slightly.  The 
superiority of the lognormal model over the normal model for these data is evident from the behavior of 
the ratios of the means to the baseline mean, with the skewed data causing the symmetrical normal’s 
means to be overestimated slightly (penultimate row).  While the choice of distribution model does 
influence the numerical results, it does not change the conclusion that common errors in Monte Carlo 
modeling can overestimate the variability by factors of seven or more, or underestimate it by half, and thus 
aren’t even consistently conservative or anticonservative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5- Assuming C and n independent overestimates scatter by 7.1 X 

How to Sample from a Joint Probability Density: 

As a consequence of the Central Limit Theorem in statistics (see the Appendix), 
regression model parameters are asymptotically multivariate normal.  Thus while the 
assumption of Gaussian behavior isn’t always appropriate for physical parameters, it is 
often justified for regression parameters.  The following algorithm can be used to sample 
from a bivariate normal density.   

Let z1, z2 be iid (independent and identically (from the same probability density) 
distributed) N(0,1), and let                      and 

                                                               then 
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                                                                                                                                 (4) 

where the symbol “~” is read “is distributed as,” N( µ, σ 2 ) is a normal density with mean 
µ and variance σ  2, and ΒΝ[ (µ1 , µ2 )’, σ1

2 , σ2
2 , ρ ]  represents a bivariate normal density 

with means µ1 , µ2, variances σ1
2, σ2

2 , and correlation, ρ.  Equation 4 can be generalized to 
higher dimension regression models, which will of course require the parameter 
covariance matrix as the extension of s1, s2 and ρ1,2 here.   

Sampling from higher dimension, non-normal, joint densities: 

Generalizations of equation 4 are not often justified in modeling the joint behavior of 
physical parameters since such situations are rarely multivariate normal.  Rare too is 
statistical independence.  It is lamentable then that many Monte Carlo users hope to avoid 
these difficulties by assuming them away.  (If all the variables are assumed to be 
independent, then their marginal densities can be used.)  Convenience, however, is scant 
justification, and consensus is a poor measure of veracity.  Mother Nature will do as she 
will whether our simulations portend effectively or not.   

All is not hopeless, however, and great progress has been made by taking advantage 
of conditional independence, and modeling the joint density as a network connected by 
statements of conditional probability [5].  A practical example is presented in [6]. 

Another underappreciated difficulty with direct-sampling Monte Carlo is what is 
referred to in the Bayesian literature as the "curse of dimensionality" [cf: 7].  This is the 
requirement that the number of sampled points must increase exponentially with the 
number of random variables to maintain a given level of precision.  This places a 
practical limit on direct-sampling Monte Carlo. 

A “new” method, Markov Chain Monte Carlo, (fifty years old but only recently 
rediscovered [8]) isn’t encumbered by this impediment.  Direct-sampling methods must 
sample directly from the entire probability space to obtain a sample from the joint 
probability density of interest.  In contrast, Markov Chain Monte Carlo methods can 
sample directly from the desired joint probability density itself.  Because they do not 
have to sample everywhere in the probability space, and only sample where the variables 
most probably reside, MCMC methods are not fettered by the problem of large 
dimensions.  MCMC has revolutionized Bayesian statistics during the past decade, yet 
remains almost unknown to the engineering community.   

Putting Things in Perspective: 

If engineering Monte Carlo analysis is vulnerable to such enormous errors why do so 
many MC studies produce reasonable results?  Here, flouting Murphy’s Law, serendipity 
provides an explanation.  First, many physical phenomena are indeed statistically 
independent, and thus do not conflict with that implicit assumption.  All 3 regression 
model parameters are correlated, however, so any MC simulation based on them is 

                                                 
3 Under some circumstances, for example when the data are centered at YX , some of the model covariances are zero.   

( )2
2

2,112,1222 1 zzsx ρρµ −++=
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vulnerable to the errors illustrated here.  (For at least 75 years it has been well known in 
the applied statistics community that regression model parameters are correlated [cf.: 9], 
yet that fact is almost universally unknown to us engineers.) 

The effects of ignoring model parameter correlations are sometimes mitigated by a 
second piece of good luck: the effects of scatter in model parameters may be 
overwhelmed by other sources of variability in the system being simulated.  For example, 
the erroneously large standard deviation caused by treating Paris model parameters, C 
and n, as being independent is about 0.2 log10 units, in this instance.  If there were 
another, independent source of variability of say 0.5 log10 units (admittedly a large error), 
the resulting effect of having ignored correlation would be about (0.2 2 + 0.5 2)½ = 0.54 
log10 units, an increase in the total error of less than 10%.   

Summary: 

There is more to Monte Carlo simulation than replacing constants with probability 
densities.  We have explored four common Monte Carlo modeling oversights and 
demonstrated their unacceptable consequences, using the 68 specimen Virkler-Hillberry 
data as an example.  These errors and their consequences are not confined to the example 
data, nor to only Paris crack growth rate modeling, but must be considered in any Monte 
Carlo analysis that relies on regression models (and most do). 

We have further demonstrated that correctly modeling the regression parameters as 
multivariate normal nearly eliminates the MC model error in this example.   

Monte Carlo simulation is a powerful engineering analysis tool.  Used properly it can 
provide insights that are otherwise unattainable.  Lamentably, many practitioners are not 
aware of the statistical assumptions they are making, and that violating any one of them 
could eviscerate their analysis.   
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APPENDIX - Review of Probability Relationships: 

joint probability:  f(x, y | θθθθ) where f is the probability of x and y together as a pair, 
given the distribution parameters, θθθθ.   

multivariate distribution:  A joint probability density of two or more variables. It is 
often summarized by a vector of parameters, θθθθ.  For example, the MVnormal is 
summarized (sufficiently) by a mean vector and covariance matrix.   
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marginal probability:  :  f(x | θθθθ) where f is the probability density of x, for all 
possible values of y, given the distribution parameters, θθθθ.  The marginal probability is 
determined from the joint distribution of x and y by integrating over all values of y, thus 
integrating out the variable y.  In applications of Bayes's Theorem, y is often a matrix of 
possible parameter values.   

conditional probability:  f(x | y; θθθθ) where f is the probability of x by itself, given 
specific value of variable y, and the distribution parameters, θθθθ.  If x and y represent events 
A and B, then P(A|B) = nAB/nB ,where nAB is the number of times both A and B occur, and 
nB is the number of times B occurs.  P(A|B) = P(AB)/P(B), since P(AB) = nAB/N and  

P(B) = nB/N so that P(A|B) =
Nn
Nn

B

AB

/
/ = nAB/nB   Note that in general the conditional 

probability of A given B is not the same as B given A.  The probability of both A and B 
together is P(AB), and P(A|B) × P(B) = P(AB) = P(B|A) × P(A), if both P(A) and P(B) are 
non-zero.  This leads to a statement of Bayes's Theorem: P(B|A) = P(A|B) × P(B)/P(A).  
Conditional probability is also the basis for statistical dependence and independence.   

Joint, marginal and conditional densities are summarized in Figure A-1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-1 - Schematic Showing Joint, Conditional and Marginal Densities 
 

The Central Limit Theorem justifies using a multivariate normal density to model 
the collective behavior of regression model parameters.  The CLT states that the 
distribution of an average tends to be normal, even when the distribution from which the 
average is computed is decidedly non-normal.  Furthermore, this normal distribution will 
have the same mean as the parent distribution, and variance equal to the variance of the 
parent divided by the sample size.  This result does not depend on the original 
distribution of x, only that the mean and variance are finite.  And "large" n may be on the 
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order of a dozen observations.  Formally the CLT says that if x1, x2 , ... xn are a sequence 
of independent identically distributed (iid) random variables, with finite mean µ x and 
variance σx

2 then z n converges in distribution to N(0, 1) as n becomes large, and   

)//()()var(/)(( nxxxExz xxnnnnn σµ−=−=  

where E( ) is the expectation (averaging) operator.  For a discrete density, f(x), the 
expectation operator is E(x)=Σ xf(x), and for continuous density, f(x), ∫= dxxxfxE )()(  
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